Thermo-poro-mechanics of chemically active creeping faults: 3. The role of serpentinite in episodic tremor and slip sequences, and transition to chaos

نویسندگان

  • T. Poulet
  • D. A. Yuen
چکیده

During the last decade, knowledge over episodic tremor and slip (ETS) events has increased dramatically owing to the widespread installation of GPS and seismic networks. The most puzzling observations are (i) the periodic nature of slow seismic events, (ii) their localization at intermediate depths (estimated 15–40 km), and (iii) the origin of the nonvolcanic fluids that are responsible for the tremor activity. We reconcile these observations using a first principles approach relying on physics, continuum mechanics, and chemistry of serpentinite in the megathrust interface. The approach reproduces the GPS sequences of 17 years of recording in Cascadia, North America, as well as over 10 years in the Hikurangi Trench of New Zealand. We show that strongly endothermic reactions, such as serpentinite dehydration, are required for ETS events. We report that in this tectonic setting, it is its chemical reaction kinetics, not the low friction, that marks serpentinite as a key mineral for stable, self-sustained oscillations. We find that the subduction zone instabilities are driven from the ductile realm rather than the brittle cover. Even when earthquakes in the cover perturb the oscillator, it relaxes to its fundamental mode. Such a transition from stable oscillations to chaos is witnessed in the ETS signal of NZ following theM6.8, 2007 seismic event, which triggered a secondary mode of oscillations lasting for a few years. We consequently suggest that the rich dynamics of ductile modes of failure may be used to decipher the chaotic time sequences underpinning seismic events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled thermo-hydro-mechanical processes in fault zones during rapid slip

The physical processes which occur during an earthquake exhibit several coupled phenomena as large variations of stress, pore pressure and temperature take place in the slip zone. Thermo-poro-mechanical couplings due to shear heating can be associated to phase transition such as vaporization of the pore fluid, melting of fault gouge and to chemical effects such as dehydration of minerals or dec...

متن کامل

Effects of Thermal Diffusion and Radiation on Magnetohydrodynamic (MHD) Chemically Reacting Fluid Flow Past a Vertical Plate in a Slip Flow Regime

An analysis has been conceded to study the effects of Soret and thermal radiation effects on the magnetohydrodynamic convective flow of a viscous, incompressible, electrically conducting fluid with heat and mass transfer over a plate with time-dependent suction velocity in a slip flow regime in the presence of first-order chemical reaction. The slip conditions at the boundaries for the governin...

متن کامل

Geomorphic and structural assessment of active tectonics in NW Alborz

Alborz Mountains is a region of active deformation within Arabia-Eurasia collision zone. The study fault system in western Alborz comprises abundant evidence of active faulting accompanied by occurrence of historical earthquakes. Active tectonics of Manjil-Rudbar fault zone whose movement caused destructive 1990 Manjil-Rudbar earthquake was concentrated in this article through geomorphic and st...

متن کامل

Structural concepts for Soltanieh fault zone (NW Iran)

Active deformation in Alborz range is due to N-S convergence between Arabia and Eurasia. This paper provides geomorphic traces of regional deformation in NW Iran in order to characterize active faulting on major faults. Soltanieh and North Zanjan fault systems are involved in convergence boundary extent between South Caspian Basin and Central Iran. Soltanieh and North Zanjan faults are major re...

متن کامل

Satellite thermal surveys to detecting hidden active faults and fault termination, Case study of Quchan fault, NE Iran

The Quchan fault is located in Quchan - Shirvan area which is a part of Chenaran- Bojnourd plain in Kopeh-Dagh zone, NE Iran. The Quchan active fault with northwest – southeast trending is one of the most important strike-slip faults in the area which its activity led to the numerous historical and instrumental earthquakes. The Neo-tectonic activities of this fault are investigated by the drain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014